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Hi, 'm Athanasios Koutras

I am an Associate Professor at the Department of Electrical & Computer
Engineering, University of Peloponnese, Greece, with a PhD in Blind Speech
Separation and Speech Recognition from the University of Patras.

My research focuses on brain signal and medical image analysis, as well as
speech and music processing. As Head of the SIPPRE Group, | lead projects on
brain-computer interfaces (BCls) for healthcare and entertainment
applications.
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EEG



Introduction to Brain Signals [=:

The brain consists of billions of neurons that
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Introduction to Brain Signals [=:

Neurons receive multiple inputs; if enough excitatory signals surpass a threshold, the
neuron fires an action potential.

The action potential travels down the neuron’s axon to communicate with other neurons.

Neuronal populations tend to synchronize their activity, leading to brain waves (alpha,
beta, theta, delta), which can be detected by EEG.
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Recording brain signals [=:
Magnetoencephalogram (MEG) Functional MRI (fMRI) Electroencephalogram (EEG)
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EEG Basics

What is Electroencephalography (EEG)?

e 3

e 3

a non-invasive neuroimaging
technique that records the electrical
activity of the brain using electrodes
placed on the scalp.

widely used in both clinical settings for
diagnosing neurological conditions
and in research for studying cognitive
processes, sleep patterns, and
brain-computer interfaces.

Electrode

Measured potentials
for each electrode
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How EEG works

=> It detects and amplifies the tiny electrical EEG Electrode Placement
signals produced by neurons in the brain.

—> Electrodes placed on the scalp pick up these
signals, which are then amplified and
digitized for analysis.

- The resulting waveforms represent the Naion
collective activity of millions of neurons, with
different patterns and frequencies
corresponding to various brain states and
cognitive processes.

=> Modern EEG systems can use anywhere from
a few to hundreds of electrodes, allowing for
detailed mapping of electrical activity across
different regions of the brain.
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EEG Characteristics

Advantages

* High temporal resolution, capturing brain activity
changes in milliseconds

* Non-invasive and relatively inexpensive compared
to other neuroimaging techniques

* Portable and can be used in various settings,
including during physical activities

* Allows for real-time monitoring of brain activity

Limitations

* Limited spatial resolution compared to
techniques like fMRI

+ Difficulty in detecting activity from deep brain
structures

» Susceptible to various artifacts, such as muscle
movements and electrical interference

* Requires careful interpretation due to the
complexity of brain signals




Common EEG Waveforms

Delta Waves (0.5 - 4 Hz)
Associated with deep sleep stages.

Theta Waves (4 - 8 Hz)
Linked to drowsiness, meditation, and early sleep stages.

Alpha Waves (8 - 13 Hz)
Observed during relaxed, wakeful states with closed eyes.

Beta Waves (13 - 30 Hz)
Present during active thinking and focused mental activity.

Gamma Waves (>30 Hz)
Related to higher mental activity, including perception and
consciousness.

MAKING WAVES
The brain wave spectrum divides into
5 bands with different associated states:

. DELTA WAVES (8), ¥2-4Hz:

Deep unconscious, intuition
and insight

. THETA WAVES (0), 4-8Hz:
Subconscious creativity,
deep relaxation

During successful meditation, the subject
typically starts off with high beta (thinking),
then experiences more alpha, followed by more
theta and finally delta, the deepest level. After
some time, the reverse process takes place,
bringing the person back to beta feeling awake
and
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Signal Analysis Techniques

Time-Domain Analysis

=> Observing voltage changes over time.
=> Identifies temporal patterns and event-related potentials (ERPs).

EEG-signal registered from diferent cortex locations
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Signal Analysis Techniques

Frequency-Domain Analysis

-

-

Transforming signals using
Fourier Transform.
Decomposes EEG into
constituent frequencies.
Useful for power spectral
density (PSD) estimation.
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Artifacts and Noise in EEG Signals

Common Artifacts

* Eye Blinks and
Movements
generate large potentials
disrupting EEG readings. * Electrical Interference

* Muscle Activity (EMG) 50/60 Hz power line noise.

Environmental Noise

high-frequency noise from e Equipment Noise
jaw clenching or facial Imperfect grounding or
movements. faulty cables.
* Electrode Movement
physical shifts causing
signal fluctuations.




Strategies for Mitigating Artifacts

Pre-Processing Techniques

Filtering
Apply band-passfilters to
isolate desired frequencies.

Independent Component

Analysis (ICA)
Separate and remove artifact
components.

Instruct subjects to minimize
movement.

Secure electrode connections
properly.

Conductrecordingsin a
controlled environment.
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EEG for BCI



EEG in BCls

e plays a crucial role in non-invasive Brain-Computer Interfaces (BCls).

e primary method for capturing brain signals in real-time.
e particularly valuable, safer and more accessible for research, clinical applications

as well as entertainment.
e they identify specific patterns or changes in brain signals associated with particular

thoughts / intentions
e the patterns can then be used to control computers, communication devices, or

assistive technologies.



Signal acquisition and processing

Signal acquisition in EEG-based BCls involves collecting raw electrical signals from the

scalp using electrodes. These signals are then amplified and digitized for further
processing.

Feature extraction to
identify relevant
characteristics of the

Filtering to EEG signal, such as
remove noise and specific frequency
unwanted bands or event-related
frequencies potentials
Artifact removal to Classification algorithms to
clean up signals interpret these features and
contaminated by eye translate them into meaningful
movements, muscle commands or outputs for the
activity, or external BCI system
electrical

interference



Feature extraction

e Feature extraction in BCl systems involves identifying and isolating specific
characteristics of the EEG signal that are most relevant to the intended task.
e Common features include power spectral density, wavelet coefficients, and

time-domain parameters.
e These features are chosen to maximize the discriminative information in the signal

while reducing its dimensionality.



Classification

using machine learning algorithms to categorize the extracted features into distinct
classes corresponding to different mental states or intended actions.

Popular classification methods in BCls include Linear Discriminant Analysis (LDA),
Support Vector Machines (SVM), and increasingly, deep learning approaches like
Convolutional Neural Networks (CNNs).

The goal of classification is to accurately interpret the user's intentions from their
brain signals, enabling the BCI to execute the desired commands or actions.



Types of BCls

(a brief taxonomy)



Invasive Non-Invasive
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Invasive BCls [=];

systems that require surgical implantation of electrodes directly into or onto the surface of the brain.

provide high-resolution recordings of neural activity by bypassing the skull and other tissues that can
attenuate signals in non-invasive methods.

Examples of invasive BCls:

=> Cortical implants: Arrays of microelectrodes surgically placed on the surface of the brain or
inserted into the cortex. The Utah Array is a well-known example, used in research to allow
paralyzed individuals to control robotic arms or communicate through computers.

=> Intracortical electrodes: Finer electrodes that penetrate the cortex to record from individual
neurons or small groups of neurons, providing exceptionally detailed neural data.

Offer superior signal quality and spatial resolution

come with risks associated with surgery and long-term implantation, such as infection or tissue
damage.
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Non-invasive BCls [=];

Non-invasive BCls are systems that measure brain activity without requiring surgical intervention.

=> EEG (Electroencephalography): Uses electrodes on the scalp to measure electrical activity of the
brain. It's the most common type due to its high temporal resolution, portability, and relatively
low cost.

-> fMRI (Functional Magnetic Resonance Imaging): Measures brain activity by detecting changesin
blood oxygenation and flow. It offers high spatial resolution but low temporal resolution and
requires a large, immobile scanner.

-> fNIRS (Functional Near-Infrared Spectroscopy): Uses near-infrared light to measure changes in
blood oxygenation in the brain. It offers a balance between spatial and temporal resolution and is
more portable than fMRI.

Each type has its own strengths and limitations, making them suitable for different BCl applications
and research contexts.



Invasive / non-Invasive (a quick comparison)

BCI Type

Invasive BCls

Non-invasive
BCls

Pros

High spatial and temporal resolution

Direct recording of neural activity, resulting
in clearer signals

Capable of both recording and stimulating
neurons

No surgical risks, making them safer and
more accessible

Usable by a wider population, including
healthy individuals

Allows whole-brain coverage (e.g., fMRI,
fNIRS)

More acceptable for commercial and
widespread use

Cons

Requires surgery, with risks of infection and
tissue damage

Long-term stability issues due to immune
responses or electrode degradation

Limited to specific brain areas where electrodes
are placed

Ethical concerns regarding brain alteration

Lower signal quality and spatial resolution
(especially EEG)

More susceptible to external noise and artifacts

Some types (e.g., fMRI) have low portability and
high cost

May require longer training periods for users to
achieve proficiency

[=]
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Aspect
Signal Quality

Signal Source

Risks
Longevity
Coverage
Portability
User Base

Cost

Ethical Concerns

Examples

Main Applications

Invasive BCls

High spatial and temporal resolution

Direct neural activity

Surgical risks, potential tissue damage
Potential long-term stability issues
Limited to implant locations

Limited due to implanted components
Limited to clinical necessity

High due to surgery and specialized
equipment

High due to brain alteration
Cortical implants, intracortical

electrodes

Severe medical conditions, advanced
neural control

Non-invasive BCls

Generally lower resolution (varies by
method)

Indirect measurements (e.g., electrical,
hemodynamic)

Minimal health risks

No long-term physiological concerns

Can cover entire brain (method dependent)
more portable (except fMRI)

Wider potential user base

Variable, but generally lower

Lower, but still present

EEG, fMRI, fNIRS

Research, consumer applications, assistive
technologies

Which oneis

better?




Synchronous Asynchronous
(cue based) (self based)
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Synchronous BCls [=:
Synchronous or cue-based BCls are systems where the user can only interact with the
interface during specific, predefined time windows.

operate on a fixed schedule, where the system prompts the user to perform mental
tasks at specific times.

The user must respond to these cues, generating brain signals that the BCl can
interpret.



Characteristics of synchronous BCls [=:
=> Controlled timing of interactions

=> Reduced signal processing complexity due to known timing

—> Potentially easier for novice users due to clear instructions

=> Limited flexibility in terms of when the user can provide input

These systems are often used in applications like spelling devices or simple selection
tasks, where the timing of user input can be controlled.



Asynchronous (self-paced) BCls O

allow users to interact with the interface at any time, without waiting for external cues.

continuously monitor the user's brain activity, allowing them to generate commands or inputs
whenever they choose.

The system must be able to distinguish between intentional control signals and background
brain activity.

For example, in a motor imagery-based BCl, the user might imagine moving their left or right
hand to control a cursor on a screen, and can do so at any moment they wish.



Key characteristics of asynchronous BCls [=:

More natural and intuitive interaction

Greater flexibility for the user

Increased complexity in signal processing and classification

Potential for higher information transfer rates in skilled users

More challenging to implement due to the need for continuous signal interpretation
often used in applications requiring more fluid control (continuous movement of
prosthetic limbs, navigation in virtual environments).

generally they require more training for both the user and the system

offer more naturalistic interaction once mastered.

N2 0 R R
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Asynchronous/ synchronous (a quick comparison)

BCIl Type Pros Cons

Asynchronous Continuous control of prosthetic limbsor ~ More complexsignal processing and
wheelchairs classification algorithms required

BCls

(self paced) Seizure prediction or cognitive state Higher false positive rates due to continuous
monitoring monitoring
Natural interaction with computers (e.g., Difficulty in distinguishing intentional control
cursor control) from background brain activity
Advanced gaming and virtual reality Longer user training periods are often required
interfaces

Synchronous Communication systems (e.g., P300 Limited to discrete, timed interactions
spellers

BCls pellers)

(cue based) Simple selection tasks (e.g., menu choices) Can be tiring due to constant attention to cues
Basic environmental control systems May feel unnatural or constraining for some

users

Rehabilitation protocols with timed Lower information transfer rate compared to
exercises asynchronous systems




Aspect Synchronous BCls Asynchronous BCls

Applications + P300 spellers for communication « Continuous prosthetic limb control
« Simple selection tasks « Seizure prediction
« Basic environmental control « Natural computer interaction
+ Timed rehabilitation exercises + Advanced gaming and VR interfaces
Challenges « Limited to discrete, timed interactions  « Complex signal processing required
« User fatigue from constant cue attention « Higher false positive rates
+ May feel unnatural or constraining « Difficulty distinguishing intentional control
« Lower information transfer rate « Longer user training periods
User Interaction Predetermined time windows Any time, continuous Wh i C h o n e is
Signal Processing Simpler due to known timing More complex, requires continuous b 7
interpretation ette r .
User Experience More structured, potentially easier for More natural, but may require more skill
novices
Flexibility Limited by cue schedule High, allows spontaneous user input
Information Generally lower Potentially higher with skilled users
Transfer rate
Implementation Lower Higher

Complexity




Input




Input BCls

Input BCls (output BCls from the brain's perspective) are systems designed to read and interpret
brain signals to control external devices or software.

=> Input BCls capture brain activity patterns associated with specific thoughts, intentions, or
mental states.

=> These patterns are then translated into commands for controlling various devices or
interfaces. The process typically involves:

Signal acquisition: Recording brain activity, usually via EEG for non-invasive BCls

Signal processing: Cleaning and filtering the raw brain signals

Feature extraction: Identifying relevant characteristics in the processed signals

Classification: Interpreting the features to determine the user's intent

Device control: Translating the classified signals into commands for the target device

L 2R 2R 2R 2B 4



Common applications of input BCls

Cursor control on computer screens

Wheelchair navigation for individuals with motor disabilities
Prosthetic limb movement

Spelling devices for communication

Smart home control for individuals with severe motor impairments

S N

The main advantage of input BCls is that they allow direct brain-to-device communication
they often require significant user training

can be slower or less accurate than conventional input methods for able-bodied individuals.



Output BCls: Sending information to the brain

Output BCls, also known as input BCls from the brain's perspective, are systems designed to send
information directly to the brain, bypassing traditional sensory pathways.

=> aim to provide sensory or cognitive information to the user by stimulating specific areas of
the brain.
=> Thisis achieved through various methods, depending on whether the BCl is invasive or
non-invasive. The process typically involves:
€ Information encoding: Translating external data into patterns of neural stimulation
€ Stimulation delivery: Activating targeted brain areas using electrical, magnetic, or
other forms of energy
€ Neuralinterpretation: The brain's adaptation to and understanding of these artificial
inputs



Applications of output BCls

Restoring or augmenting sensory functions (e.g., artificial vision or hearing)
Providing sensory feedback for prosthetic limbs

Enhancing memory or cognitive functions

Treating neurological disorders through targeted stimulation

Delivering information directly to the brain (e.g., for learning or augmented reality)

202 R

Output BClIs have the potential to significantly impact various fields, from medical treatments to
human augmentation.

they face challenges in terms of precise stimulation, long-term safety, and ethical considerations
regarding altering brain function.

Many output BCI technologies are still in early research stages, with some more advanced
applications in clinical trials.



Bidirectional BCls: Combining input and output

-

-

advanced systems that combine both input and output functionalities, creating a two-way
communication channel between the brain and external devices.

Bidirectional BCls integrate the capabilities of reading brain signals (input BCls) and
sending information back to the brain (output BCls).

create a closed-loop system where the brain can both send commands and receive feedback
or new information. The process typically involves:

¢

4
4
4

Reading brain signals to interpret user intentions or mental states

Processing these signals and translating them into device commands

Generating appropriate feedback or new information based on the device's response or
external data

Delivering this information back to the brain through stimulation



Applications of bidirectional BCls

Enhanced prosthetic control with sensory feedback
More intuitive and responsive brain-computer interaction
Potential for neural rehabilitation through simultaneous stimulation and monitoring

Advanced neuroprosthetics that can both receive commands and provide sensations
Cognitive enhancement applications combining brain monitoring and targeted stimulation

202 R

represent a cutting-edge area of research with the potential to create more natural and efficient
brain-machine interfaces.

they also present significant challenges in terms of system complexity, signal processing, and
ensuring safe and effective simultaneous reading and stimulation of neural activity.

As research progresses, bidirectional BCls could lead to transformative applications in healthcare,
human augmentation, and beyond.



Which one is better?

Aspect

Signal Direction

Key Processes

Development
Stage

Common
Applications

Input BCls Output BCls

Brain to Device Device to Brain

1. Information encoding
2. Stimulation delivery
3. Neural interpretation

1. Signal acquisition
2. Signal processing
3. Feature extraction
4. Classification

5. Device control

More mature, some
commercial applications

Mostly in research/clinical trial
stage

» Cursor control

» Wheelchair navigation

« Prosthetic limb movement
+ Spelling devices

« Smart home control

« Sensory restoration

« Prosthetic feedback

+ Cognitive enhancement

» Neurological treatment

« Direct information delivery

Bidirectional BCls

Brain <> Device

Combines processes of both Input
and Output BCls

Cutting-edge research

« Advanced neuroprosthetics
« Intuitive brain-computer
interaction

« Neural rehabilitation

« Cognitive enhancement




Which one is better?

Aspect Input BCls Output BCIs Bidirectional BCls
Main Advantages - Direct brain-to-device « Restores or augments sensory + Closed-loop system

control functions + More natural and efficient

+ Bypassesdamaged neural « Enables new forms of interaction

pathways information input « Enhanced feedback and control
Key Challenges + User training « Precise stimulation « System complexity

« Signal accuracy and speed - Long-term safety « Simultaneous read/write

« Distinguishing intentional - Ethical considerations operations

control « Signal interference management




Challenges and
Limitations



Technical Challenges

w Low signal-to-noise
ratio in EEG data.

Limited Spatial
Q Resolution of Non-
Invasive Methods

o

v/

Difficultyin
decoding complex
neuralsignals.

Signal Artifacts and
Interference

Real-time
Processing
Limitations



User Experience Challenges

Steep Learning Curve and
Training Requirements

+ extensive training, which can be time-consuming and discouraging

» BCI devices can be uncomfortable for extended periods

Comfortand Wearability Issues [ affects user comfort and willingness to use the system.

Inconsistent Performance and
Reliability

» Variability in signal quality leads to inconsistent system responses

Mental Fatigue and

8 » BCI often requires intense concentration, leading to mental fatigue
Concentration Demands q & &

Delayed Feedback and System

* Latencies in processing can result in delayed system responses

Responsiveness

* Regular calibration sessions are often necessary to maintain system

Frequent Calibration Needs accuracy




Data Scarcity and Variability

A

Limited Availability of
High-Quality Neural

Data

Collecting
extensive
datasets of brain
signals is
challenging due
to ethical
concerns,
privacy issues,
and the
complexity of
acquiring
accurate
measurements.

Variability Between

Individuals

Significant
differences in
neural patterns
across different
users make it
difficult to
create models
that generalize
well to the
broader
population.

Intra-Subject

Variability Over Time

Neural signals
can fluctuate
within the same
individual due
to factors like
fatigue, stress,
or changes in
electrode
placement,
affecting data
consistency.

Lack of Standardized

)

Data Collection

Protocols

Diverse
methodologies
and equipment
used in data
acquisition lead
to
inconsistencies,
making it hard
to integrate and
compare
datasets from
different
sources.

Small and Imbalanced

Datasets

Limited sample
sizes and
underrepresent
ation of certain
neural states
hinder the
development of
robust models
capable of
handling diverse
scenarios.



Current
Applications of
BCls in Healthcare



Common BClI systems

Steady-State Visually
P300 spellers Evoked Potential
(SSVEP)

Commpon BCI
Systems

Imagined Speech
(Silent Speech) BCI

Motor imagery BCI




The P300 system

detects the P300 wave, an event-related potential (ERP) that appears in the EEG signal
approximately 300 milliseconds after a person perceives a rare or significant stimulus.

Brunner P, Ritaccio AL, Emrich JF, Bischof H and Schalk G (2011) Rapid communication with a “P300” matrix speller using
electrocorticographic signals (ECoG). Front. Neurosci. 5:5. doi: 10.3389/fnins.2011.00005



P300 - How it works

Stimulus Presentation

» Theuseris presented with a series of visual stimuli (letters, numbers,

or symbols). ‘

Random Flashes
» The user concentrates on the desired symbol without makingany

physical movement. ‘

EEG Signal Detection

« When the target symbolflashes, theuser's brain generates a P300

response. ‘

Signal Processing - Command execution

+ Therows and columns of the grid flash in arandom sequence.

Focused Attention

« Thesystem processes the EEG data to detect the P300 waveand

executes the command



P300 - Key features

Non-Invasive
Utilizes EEG electrodes placed on the scalp, eliminating the need for surgical procedures.

High Accuracy
Capable of reliably detecting user intentions based on well-defined neural responses.

Versatile Applications
Used in assistive technologies for individuals with motor impairments, allowing
communication and environmental control.

User-Friendly
Requires minimal training, making it accessible for clinical and home settings.



P300 - Applications

Assistive Communication

Enables individuals with conditions like amyotrophic lateral
sclerosis (ALS) or spinal cord injuries to communicate via
text or speech synthesis.

Environmental Control
Allows users to operate devices such as wheelchairs, robotic
arms, or smart home systems.

Research Tool

Serves as a platform for studying cognitive processes and
neural mechanisms underlying attention and
decision-making.




Steady-State Visually Evoked Potential (SSVEP)

a non-invasive neural interface that enables direct communication by leveraging the
brain's natural electrical response to visual stimuli flickering at specific frequencies.

When a user focuses on a visual stimulus that flickers at a constant rate, the brain
generates electrical activity at the same frequency, known as the Steady-State Visually
Evoked Potential (SSVEP).

This response can be detected using electroencephalography (EEG) and translated into
commands for controlling devices or software applications.



SSVEP - How it works

Visual Stimuli Presentation

« Multiplevisual targets are displayed on a screen or through LEDs, each flickering ata
distinct constant frequency (typically between 3.5 Hz and 75 Hz).

Focused Attention

« The user gazes at the desired target stimulus, concentrating their attention on it
without any physical movement.

EEG Signal Detection

« EEG electrodes placed on the scalp record the brain's electrical activity, capturing the
SSVEP signals corresponding to the flickering stimuli.

Frequency Detection

« The system analyzes the EEG data to identify the dominant frequency components,
determining which stimulus the user is focusing on.

Command Execution

« Upon detecting the specific frequency, the system interprets it as a selection of the
associated command or action, enabling control over external devices or software.




SSVEP - Key features

Non-Invasive
Utilizes surface EEG electrodes, avoiding the need for surgical implantation.

High Information Transfer Rate
Offers rapid communication due to continuous signal generation and minimal latency.

Robust Signal Detection
SSVEP signals have a high signal-to-noise ratio, making them relatively easy to detect and
classify.

Minimal Training Required
Users can typically operate the system with little to no extensive training.



SSVEP - Advantages

Fast Response Time
The continuous nature of SSVEP allows for quick detection and system responsiveness.

High Accuracy
Distinct flickering frequencies reduce the likelihood of misclassification, enhancing system
reliability.

Scalability
Multiple commands can be implemented by adding more stimuli with different
frequencies without increasing the cognitive load significantly.



SSVEP - Considerations

Visual Comfort
Prolonged exposure to
flickering stimuli may cause
eye strain or discomfort for
some users.

Ambient Light Sensitivity
External lighting conditions
and screenrefresh rates can
interfere with SSVEP
detection, necessitating
controlled environments.

N

User Variability
Individual differencesin
SSVEP responses may
require system calibration
for optimal performance.




SSVEP - Applications

Assistive Communication

Empowers individuals with motor impairments to
select letters, words, or commands by focusing
on specific visual stimuli, facilitating
communication.

Device Control

Enables control over wheelchairs, prosthetic
limbs, drones, or smart home devices through
gaze-based selection.

Gaming and Virtual Reality

Provides an interactive experience where users
can control game elements or navigate virtual
environments using their visual attention.

fl H
f3Hz
fA H:

Signal
Acquisition

Flicker

Audio
Feedback

Ge

Signal Processing

Erdem Erkan, Mehmet Akbaba, A study on performance increasing in SSVEP based BCI
application, Engineering Science and Technology, an International Journal, Volume 21, Issue 3,
2018, Pages 421-427, ISSN 2215-0986, https.//doi.org/10.1016/].jestch.2018.04.002.



Motor Imagery (Ml) BCI

a hon-invasive neural interface

enables individuals to communicate and
control external devices through the mental
simulation of physical movements
without actual muscle activity.

translates thought patterns into actionable
commands, providing a direct pathway
between the brain and external systems.

motor imagery EEG

mental task
visual
cue

Garcia-Murillo DG, Alvarez-Meza AM, Castellanos-Dominguez CG. KCS-FCnet:
Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor
Imagery Classification. Diagnostics. 2023; 13(6):1122.
https://doi.org/10.3390/diagnostics13061122



Ml - How it works

Motor Imagery Tasks

The user is instructed to imagine physical movements, (left orright hand, feet, or
tongue), without performing any actual movement.

EEG Signal Detection

EEG captures the neural patterns associated with motorimagery.
Signal Processing l

identify characteristic patterns (Event-Related Desynchronization (ERD) and Event-
Related Synchronization (ERS)) in specific frequency bands (typically alpha and

beta rhythms). ‘
Feature Extraction and Classification

extract relevant features and classify them.

Command Execution
The classified signals are translated into control commands



Ml - Key features

Non-Invasive
Utilizes surface EEG electrodes, eliminating the need for surgical procedures.

Natural Control Paradigm
Leverages the brain's inherent motor planning processes, making the interface intuitive
after training.

Versatile Applications
Can be customized to recognize various imagined movements, providing multiple control

commandes.

No External Stimuli Required
Does not rely on visual or auditory cues, allowing operation without external prompts.



MI - Advantages

Intuitive Use
Mimics natural motor intention processes, which can be more easily adopted by users
after appropriate training.

Independence from Sensory Channels
Beneficial for users with sensory impairments, as it does not require visual or auditory
stimuli.

Enhancement of Motor Recovery
Can aid in physical rehabilitation by activating motor pathways and encouraging
neuroplastic changes.



Training Requirement

Users typically require
individualized training
sessions to achieve
reliable control, as neural
patterns can vary
significantly between
individuals.

Ml - Considerations

Signal Complexity

Motor imagery EEG signals
can be subtle and
susceptible to
interference, necessitating
advanced signal
processing and noise
reduction techniques.

User Fatigue

Sustained concentration
on motor imagery tasks
may lead to mental
fatigue, affecting
performance over time.

Variability in User Ability

Some individuals may find
it challenging to generate
distinguishable motor
imagery signals, impacting
the system's
effectiveness.




Ml - Applications

Neurorehabilitation
Assists stroke survivors and patients with motor impairments in retraining motor

functions by promoting neural plasticity through motor imagery exercises.

Prosthetic Control
Enables amputees or individuals with paralysis to control robotic limbs or exoskeletons,

restoring mobility and independence.

Communication Aids
Provides alternative communication methods for individuals with conditions like locked-in

syndrome by mapping imagined movements to letters or words.

Virtual Reality and Gaming
Offers immersive control in virtual environments, enhancing user experience by allowing

interaction through thought-based commands.



Imagined Speech (Silent Speech) BCI

enables communication by decoding neural

¢ Signal Processing

signals associated with the imagination of EEH
A Imagined Speech f = WWM

“thirsty”

J

D Feature Extraction

speech without actual vocalization.
5 7 '

interprets the brain's electrical activity M

WMWM

related to speech planning and articulation.
\Y

(r

—

holds significant promise for people who are <<
unable to speak due to neurological
conditions

offers a silent communication method in

E Classification

; ‘am’ ; ‘thirsty’ }

F Textual Representation

“l am thirsty”

Ciaran Cooney, Raffaella Folli, Damien Coyle, Neurolinguistics Research Advancing
Development of a Direct-Speech Brain-Computer Interface, iScience, Volume 8, 2018, Pages

environments where speech is impractical. 1031125, ISSN 2589-0042, htps.//doi 0rg/10.1016/} 501 201809016




IS - How It Works

Speech Imagination
The user internally simulates speaking specific words or phrases without
producing any sound or engaging the vocal cords.

EEG Signal Detection

Electroencephalography (EEG) electrodes placed on the scalp record the brain's
electrical activity, capturing neural patterns associated with imagined speech
processes.

Signal Processing

The system processes the EEG data to identify characteristic features linked to
differentimagined phonemes, syllables, or words.

Machine Learning Algorithms
Advanced computational models, including machine learning and deep learning
techniques, classify the neural patterns to decode the intended speech content.

Output Generation
The decoded signals are translated into text or synthesized speech, enabling the
user to communicate their thoughts silently.




IS - Key Features

Non-Invasive
Utilizes surface EEG electrodes, eliminating the need for surgical intervention.

Silent Communication
Allows users to communicate without audible speech or physical movements, ideal for
individuals with speech impairments or in noise-sensitive environments.

Natural Interaction
Builds upon the natural cognitive process of inner speech, making the system intuitive with

practice.

Real-Time Processing
Aims to provide immediate translation of imagined speech into text or audio output for seamless

communication.



IS - Advantages

Increased Independence
Empowers individuals with speech and motor impairments to express themselves without assistance.

Enhanced Privacy
Enables confidential communication, as thoughts can be transmitted without external cues or

audible sounds.

Intuitive Use
Leverages the natural process of thinking in words, potentially reducing the learning curve compared

to other BCI modalities.



IS - Considerations

Technical Challenges

Decodingimagined
speechis complexdue
to the subtle and
overlapping neural
signalsinvolved in
speechimagination.

Training Requirement

Users may require
extensive training to
generate
distinguishable neural
patterns, and the
system needs to adapt
to individual
differences.

Limited Vocabulary

Current technology may
support a limited set of
words or phrases,
necessitating ongoing
development for
broaderlanguage
support.

Signal Quality

EEG signals are
susceptible to noise
from muscle
movements, eye blinks,
and external electrical
interference, which can
affectaccuracy.

Latencylssues

Processing and
decoding neural signals
inreal-timeis
computationally
intensive, potentially
leadingto delaysin
communication.




IS - Current Research and Development

Advanced Signal Processing
Researchers are developing sophisticated algorithms to improve the accuracy of decoding imagined
speech, including the use of deep learning neural networks.

High-Density EEG and Alternative Modalities
Exploring the use of high-density EEG arrays or other neuroimaging techniques like functional
Near-Infrared Spectroscopy (fNIRS) or Magnetoencephalography (MEG) to enhance signal resolution.

Personalized Models

Implementing adaptive systems that learn from individual users' neural patterns to improve
performance over time.

Integration with Assistive Technologies

Combining imagined speech BCl systems with existing communication devices to create hybrid
solutions that maximize user benefit.



IS - Applications

Assistive Communication
Offers a vital communication channel for individuals with conditions like amyotrophic lateral
sclerosis (ALS), locked-in syndrome, or severe speech apraxia.

Covert Communication
Useful in situations requiring silent communication, such as military operations, secure
communications, or noisy environments where speaking is challenging.

Augmentative and Alternative Communication (AAC)
Enhances existing AAC devices by providing a more direct and efficient input method through
thought-based communication.



Other types of BCI systems

Slow Cortical Potential
(SCP)

Error-Related Potential
(ErrP) BCI Systems

Emotion or Affective State-
Based BCI Systems

Functional Near-Infrared
Spectroscopy (fNIRS)

Auditory Evoked Potential
(AEP)

Invasive Neural Implant
BCls

Magnetoencephalography
(MEG)-Based

Tactile BCI Systems

Cortical Surface BCls Using
High-Density EEG

Electrocorticography
(ECoG)-Based

Mental Task-Based BCI
Systems

Steady-State
Somatosensory Evoked
Potential (SSSEP) BCI
Systems




Introduction to
Generative Al



What is Generative Al? [=]:

Generative Al refers to artificial intelligence systems that can create new content, data, or
outputs based on patterns learned from existing data.

=> isasubset of machine learning that focuses on creating new, original content rather than
just analyzing or categorizing existing data.

=> These systems learn the underlying patterns and structures of their training data and use this
knowledge to generate new, similar content.



[=]

Generative Al [S:

=> Unsupervised Learning: Many generative Al models use unsupervised learning techniques,
where the system learns patterns from data without explicit labels.

=> Latent Space: This is the compressed representation of data that generative models create
and manipulate to generate new outputs.

=> Sampling: The process of creating new outputs by sampling from the learned probability
distribution of the training data.

=> Transfer Learning: The ability to apply knowledge learned from one task to another, allowing
for more efficient training and diverse applications.

-> Conditional Generation: Creating outputs based on specific input conditions or constraints,

allowing for more controlled generation.



Types of Generative Al - GANs [=:

Generative Adversarial Networks (GANSs)

consist of two neural networks: a generator and a
discriminator that compete against each other.

Training set

Discriminator
Latent space Real sample

(e.g., uniform) Real

<$HI

Fake

=> The generator creates fake data
=> thediscriminator tries to distinguish between real ‘

»
~

e80000

Generator

and fake data.

Noise vector

e0e
d‘t'd'b'b ®

This adversarial process leads to the generation of highly
realistic outputs.

Fake sample

Wang, Ran, and Zhe Sage Chen. ‘Large-Scale Foundation Models and Generative Al for BigData

9 Can produce Very h|gh_qual|ty, real|st|c Outputs Neuroscience’ Neuroscience Research, June 2024, S0168010224000750.
. . . X X . https://doi.org/10.1016/j.neures.2024.06.003.

=> Widely used in image generation and manipulation

=> Challenging to train and can be unstable



https://doi.org/10.1016/j.neures.2024.06.003
https://doi.org/10.1016/j.neures.2024.06.003

How GANSs work O}

Step 1
The generator produces a batch of fake data samples.

Step 2
Both real and fake data samples are fed to the discriminator.

Step 3
The discriminator evaluates and classifies the samples.

Step 4

Feedback is used to update both networks:

- The generator learns to produce more convincing data.
- The discriminator improves at detecting fakes.




Types of Generative Al - VAEs

Variational Autoencoders (VAEs)

a type of autoencoder that learn to encode data into a compressed representation and then
decode it back.

They use probabilistic encoding, which allows for smooth interpolation and generation of new

data.

Vi bl

good at learning compact representations of data
can generate diverse outputs

produce less sharp results compared to GANs
useful for tasks like data compression and
anomaly detection

Wang, Ran, and Zhe Sage Chen. ‘Large-Scale Foundation Models and Generative Al for BigData
Neuroscience! Neuroscience Research, June 2024, S0168010224000750.
https://doi.org/10.1016/j.neures.2024.06.003.
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How VAEs work O}

Encoder Network
Maps input data to a latent space, producing parameters of a probability distribution (mean and

variance).

Decoder Network
Reconstructs data from the latent representation.

=> The encoder outputs a distribution over the latent space, not just a single point.

=> Allows for sampling and generating new data by sampling from this distribution.

=> VAEs aim to approximate the true data distribution by minimizing the difference between the
learned distribution and the true distribution.



Types of Generative Al - Transformers

Transformer-based models

based on the Transformer architecture, use
self-attention mechanisms to process sequential
data. They've revolutionized natural language
processing and are now being applied to other
domains.

=> Excellent at handling sequential data, especially
text

Can generate coherent, context-aware outputs
Scalable to very large models (e.g., GPT-3, BERT)
Widely used in language models, text generation,
and increasingly in other domains like image and
audio generation
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Wang, Ran, and Zhe Sage Chen. ‘Large-Scale Foundation Models and Generative Al for BigData
Neuroscience! Neuroscience Research, June 2024, S0168010224000750.
https://doi.org/10.1016/j.neures.2024.06.003.
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How Transformers work [=]:

Self-Attention Mechanism

-> Allows the model to weigh the relevance of different words (or elements) in the input
sequence when generating an output.
=> Multiple attention mechanisms run in parallel, capturing different aspects of relationships.

Encoder-Decoder Architecture

=> Encoder: Processes the input sequence and generates a representation.
=> Decoder: Uses the encoder's output and previous decoder outputs to generate the next
element in the sequence.



O30,

How Generative Al differs from traditional Al? [E:
L Emeee eERe

Purpose

Output

Learning Approach

Complexity

Creativity

Application areas

Evaluation metrics

Primarily focused on analysis, classification, and
prediction based on existing data.

Typically produces discrete outputs like
classifications, predictions, or decisions

Often uses supervised learning with labeled
datasets.

Can range from simple rule-based systems to
complex neural networks.

Limited creative capacity, primarily following
predefined rules or patterns.

Widely used in areas like classification,
prediction, and decision-making.

Often evaluated on accuracy, precision, recall,
etc.

Aimed at creating new, original content or data that
didn't exist before

Creates diverse, often continuous outputs like
images, text, audio, or other complex data types

Frequently employs unsupervised or semi-supervised
learning, learning patterns without explicit labels.

involves more complex architectures to capture and
reproduce intricate patterns in data

Can exhibit creative behavior, producing novel
combinations or entirely new content.

Excels in creative tasks, content generation, and data
synthesis.

Evaluation can be more subjective, focusing on
qualities like realism, diversity, and coherence of
generated outputs.



Integrating
Generative Al with
BCls



Generative Al and BCI

The signals used (like EEG) often face challenges like data scarcity, noise, and
imbalances.

Generative Al can help:

=> Data generation: Generate synthetic EEG data to augment real datasets.

=> Improve model accuracy: Address data imbalance, especially in tasks like error
recognition or motor imagery classification.

=> Signal Interpretation: Generative models can interpret complex neural signals
from the brain, reconstructing intended movements or even visualizations.

=> Natural Language Generation: Transformers enable users to translate neural
signals into text, facilitating communication for individuals with speech
impairments.



Key Generative Models in BCI

=> GANSs (Generative Adversarial Networks)
€ Two models (a generator and discriminator) work together to create realistic data.

-> DDPMs (Denoising Diffusion Probabilistic Models)
€ Create high-quality data by denoising input signals, suitable for neurophysiological data like EEG.

=> Transformers
€ canbe used to decode EEG of imagined speech and overt speech, improving performance and

lowering the number of parameters



Advances in Generative Al and BCI

Recent advances in Generative Al and BCl are mainly in the following areas:

. . content
data signal artifact creation

augmentation enhancement removal (text, speech, music,
Images, video)




Data augmentation




Key Generative Al Applications in BCI

Data Augmentation and Balancing

Problem

EEGdatais scarce and often
imbalanced, which leads to poor
classification performance, especially
in error-related potentials (ErrP) and
motorimagery tasks.

Solution

Using GANs to generate synthetic data
to augment and balance datasets.




Conditional GANs

EEG data augmentation using conditional generative adversarial networks (cGANs)
enhance the classification performance of motor imagery (Ml) BCI systems.

using synthetic EEG data generated we can significantly improve the accuracy and
robustness of various classifiers in Ml-based BCls.
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Choo, Sanghyun, Hoonseok Park, Jae-Yoon Jung, Kevin Flores, and Chang S. Nam. ‘Improving Classification Performance of Motor Imagery BCI through EEG Data Augmentation with Conditional Generative
Adversarial Networks. Neural Networks 180 (December 2024): 106665. https://dol.org/10.1016/j.neunet.2024. 106665.
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Transformer based models

Use of transformer-based models to solve
the problem of data augmentation

Multi-Head Attention

N x| Transformer Transformer | N
Encoder Decoder
Positional @ Positional
Encoding Encoding
’ Input Tnput k
Embeddin Embeddin;

Inputs Outputs (shifted right)

FIGURE 2. Architecture of the vanilla Transformer model. The model comprises an encoder and a decoder, each containing multiple identical layers.
The layers within the encoder are equipped with multi-head self-attenti isms and feed d networks. In contrast, the layers in the
decoder further integrate cross-attention mechanisms.

Preprocessing Feature Extraction
Raw EEG Signal | (Amplifier, A/D, Filter) EEG Signal processed Motor Imagery (ERD/ARS)
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Classification algorithm
Transformer-based models

Control data

FIGURE 1. Schematic of EEG-based BCI framework, illustrating the stages from signal acquisition to device control using
Transformer-based classification, highlighting prep ing, data ion, and transfer learning steps.

Rotation * Repeated trial augmentation (random cropping, random erasing) [71].
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FIGURE 5. C of data t for EEG-based brain-computer interfaces.

Keutayeva, Aigerim, and Berdakh Abibullaev. ‘Data Constraints and Performance Optimization for Transformer-Based Models in EEG-Based Brain-Computer Interfaces: A Survey. IEEE Access 12 (2024): 62628-47.

nttps://ac
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.3394696.
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Generative Adversarial Networks

e 2

application of GANs to motor imagery
(MI) signal classification in
brain-computer interfaces (BCls).
use-cases such as data augmentation,
domain adaptation, feature extraction,
and artifact removal

overcome challenges like data scarcity,
inter-subject variability, and low signal
quality.
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Mishra, Shubhra, Osama Mahmudi, and Amin Jalali. ‘Motor Imagery Signal Classification Using Adversarial Learning: A Systematic Literature Review! IEEE Access 12 (2024): 91053-74. https.//doi.org/10.1109/ACCESS.2024.3421569.
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Sighal enhancement / artifact removal




Denoising Diffusion Probabilistic Models (DDPMs)

Use of DDPMs for generating realistic
neurophysiological time series, including
EEG, ECoG, and LFP data.

Vetter, Julius, Jakob H. Macke, and Richard Gao. ‘Generating Realistic Neurophysiological Time Series with Denoising Diffusion

Probabilistic Models! Patterns 5, no. 9 (September 2024): 101047. https://doi.org/10.1016/]

atter.2024.101047.
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Figure 1. Overview of diffusion models for neurophysiological recordings and subsequent applications and an example of DDPM-generated
EEG signal

(A) A denoising diffusion probabilistic model (DDPM) p, (x) is trained on a dataset of neurophysiological recordings. It attempts to generate samples from the data
distribution p(x), underlying the training data, by successively denoising samples from a prespecified Gaussian distribution, using a neural network ¢;(x:, t) as the
denoiser. In the context of neurophysiological recordings, DDPMs can be used for various different tasks.

(B-D) include (B) sil of neL i i i (C) imputation of missing values in these recordings, and (D) class-conditional generation
of recordings from different experimental conditions or brain states. Since DDPMs allow the computation of likelihoods, the class-conditional model can also be
used to perform tasks like classification or outlier detection.

(E) An example DDPM-generated trial of 56-channel EEG.

(F-H) Trial average of three channels show close overlap between real (gray) and generated (colored) (F) evoked potentials (mean and standard deviation across
trials), (G) power spectra (median and 10%/90% percentiles), and (H) spatiotemporal relationships reflected in scalp topography.
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The EEGANet

—> EEGANet is a GAN-based framework for
removing ocular artifacts from EEG :
signals e gy

=> Doesn’trely on electrooculography ’ 5 M, :
(EOG) channels or manual inspection. |

-> By generating clean EEG signals from B

Discriminator

raw, artifact-contaminated data, e s
EEGANet improves the quality of EEG 3 3 g 3 g %{_, g %g | %g ! §§ %
data for brain-computer interface (BCI) e T e EnEE
applications. c
=> Itrepresents a significant step forward g 5_}
in applying generative Al techniques to | | o aeerstor N UL

* The red box signifies the component which will be used during implementation.

enhance EEG signal processing in BCls.

Sawangjai, Phattarapong, Manatsanan Trakulruangroj, Chiraphat Boonnag, Maytus Piriyajitakonkij, Rajesh Kumar Tripathy, Thapanun Sudhawiyangkul, and Theerawit Wilaiprasitporn. ‘EEGANet: Removal of Ocular Artifacts From the EEG Signal
Using Generative Adversarial Networks! IEEE Journal of Biomedical and Health Informatics 26, no. 10 (October 2022): 4913-24. https.//doi.org/10.1109/JBHI.2021.3131104,
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Content creation




The Brain LLM

=>  abrain-computer interface that

generates continuous language
from fMRI brain recordings using | (S Data olcton ) [ omutpreparation S Prompt construetion with brain recordings contianadion stnul:

a Ia rge Ia ngu age mOdel (LLM). Text prompt: [:E@E{Q{@EE@E{:] Text prompt embedding: QOQQDDQ — E::Sl
-  integrates brain-derived N 2 JCk)t @& Braincmbedding  Textprompt embedding | — Semantclly
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Fig. 1: Language generation with brain recordings (BrainLLM). The generation process has four main stages. S;: Brain

the cutting edge of wedding
fashion for men.

Stimulus ) ) S,: Language generation with brain recordings (BrainLLM)
Brain embedding:

presented l—— Prompt input from S;

pre-defined set of language

candidates. recordings in response to the perceived continuation are collected for language generation. So: A brain decoder is adopted

. to extract features from brain recordings and transform them into hidden vectors that match the shape of text embeddings in

- shows promise for future a standard LLM. S5: Brain embedding and text prompt embedding are concatenated as prompt input for the LLM. S4: The
appll cations in communication prompt input is fed into the LLM for language generation. BrainLLM generates content that is an exact match (“the cutting

edge of”) with, or semantically similar content (“not for everyone”) to, the perceived continuation.

aids and neuroprosthetics for

individuals with speech
impairments.

Ye, Ziyi, Qingyao Ai, Yiqun Liu, Maarten de Rijke, Min Zhang, Christina Lioma, and Tuukka Ruotsalo. ‘Language Generation from Brain Recordings’ arXiv, 11 March 2024, http://arxiv.org/abs/2311.09889.
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Image Generation BCI networks

=> An EEG-based BCl to provide relevance

feedback to a GAN for interactive image
generation.

=> The system uses brain signals to adjust the
latent space of the GAN, guiding it to generate
images that match the user's mental target
(e.g., specific facial features).

—> Thisinnovative approach demonstrates the Figure 1. Brain-relevance feedback enables communication between a
potenti al for BCIs to be integrated with generative neural network and a human operator via BCL

generative models to enhance
human-computer interaction in creative and
assistive applications.

Carlos de la Torre-Ortiz, Michiel M. A. Spapé, Lauri Kangassalo, and Tuukka Ruotsalo. ‘Brain Relevance Feedback for Interactive Image Generation. Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, 20
October 2020. https.//doi.org/10.1145/3379337.3415821.
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The Generative BCI

GBCl uses EEG-based brain signals to guide a
GAN in generating images that are predicted
to be personally attractive to the user.

By using implicit brain responses as
feedback, it iteratively adjusts the GAN’s
latent space to create new, personalized
images that align with the user’s sense of
attractiveness.

The system was validated with 30
participants, achieving an accuracy of
83.33% in generating attractive images,
demonstrating the potential of combining
BCls with generative Al to personalize visual
content.

B. GBCI Calibration

KA. G AN Trai n | n g GAN Architecture
[ — 1]

512-dimensional
feature space

Training Images

Feedback
Yes No Yes Yes

\D. GBCI Generation C. GBCI Classification X NG

Fig. 1. The GBCI approach. A: A GAN model with generator G and discriminator D is trained using ca. 200k images of celebrity faces, resulting in a
512-dimensional latent space from which sampled feature vectors used as Generator input produce artificial images; B: Participants are shown
images produced from sampled feature vectors while their EEG is measured; Following, they are shown the same images and select based on per-
sonal attractiveness; These collected data are then used to train an LDA classifier for each participant; C: Participants are shown new images pro-
duced using the same generative procedure as in B; Now, their measured EEG responses are classified as attractive/unattractive using their
personal classifier; D: New images are generated from the latent representations (i.e., feature vectors) of images labeled by the classifier as attrac-
tive. An image G(2), estimated as personally attractive, is iteratively generated as more images are classified as attractive and their combined feature
vectors z; are used as inputs for the Generator.

Spapé, Michiel M., Keith M. Davis, Lauri Kangassalo, Niklas Ravaja, Zania Sovijdrvi-Spape, and Tuukka Ruotsalo. ‘Brain-Computer Interface for Generating Personally Attractive Images! leee Transactions on Affective Computing, 2023.
https://doi.org/10.1109/taffc.2021.3059043.
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Dual Conditional Autoencoder

=> The DCAE framework
reconstructs images from EEG
signals, addressing the challenge
of converting brain signals into
visual representations

=> Reconstruction from EEG to _
Image (RE2I) | 1

Multimodal Feature Extraction (MFE) Image Generation (IG)

| DCAE

Real image

o
W N

Generated Image

"o

Fig. 1. Overview of DCAE architecture.

Zeng, Hong, Nianzhang Xia, Ming Tao, Deng Pan, Haohao Zheng, Chu Wang, Feifan Xu, Wael Zakaria, and Guojun Dai. ‘DCAE: A Dual Conditional Autoencoder Framework for the Reconstruction from EEG into Image’ Biomedical Signal Processing and
Control 81 (March 2023): 104440. https://doi.org/10.1016/].bspc.2022.104440.
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multimodal language decoding from brain activity

evaluate how Al models decode language across different modalities (text, speech, images, and video)

Decoding method: LR, GNB.
SVM, RDR. et alaa
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Fig. 1. A general decoding model of the text modality.
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Fig. 2. A general decoding model of the speech modality.

Stimuli: natural images

Task: view images

Decoding method: MLP, NN, DNN,
LSTM, RDR, PT-LDM, DC-LDM
etal
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Fig. 3. A general decoding model of the image modality.
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Fig. 4. A general decoding model of the video modality (Hluth et al., 2016a, 2016b; Nishida and Nishimoto, 2018).

Zhao, Yuhao, Yu Chen, Kaiwen Cheng, and Wei Huang. Artificial Intelligence Based Multimodal Language Decoding from Brain Activity: A Review: Brain

Research Bulletin 201 (September 2023): 110713, htt

q/10.1016/j.brainresbull.20
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Temporal Spatial Transformer Network

=> The TSTN and the EEG Conformer, improve EEG classification accuracy and noise reduction.
=> While thefield is still evolving, transformers are positioned as a promising tool for advancing

BCl technologies, particularly in enhancing real-time performance and multi-class
classification tasks.
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Fig. 1. Signal and data processing pipeline of a Biomedical application of a Brain-Computer Interface for seizure detection [12].

Pfeffer, Maximilian Achim, Steve Sai Ho Ling, and Johnny Kwok Wai Wong. ‘Exploring the Frontier: Transformer-Based Models in EEG Signal Analysis for Brain-Computer Interfaces! Computers in Biology and Medicine 178 (August 2024): 108705,
https://doi.org/10.1016/j.compbiomed.2024.108705.



https://doi.org/10.1016/j.compbiomed.2024.108705
https://doi.org/10.1016/j.compbiomed.2024.108705

Review Paper

=> how GANs, VAEs, transformers, and diffusion models, generate synthetic data

=> augment limited EEG datasets,

=> improve the resolution of brain signals i '

-> enhance cross-subject BCl performance r S5 ) Oeocrathe Al [y ﬂ o | A\

-> generate speech and images from EEG data %;i;;:dg’ Audio image
Signals

End-to-End BCI Development

Eldawlatly, Seif. ‘On the Role of Generative Artificial Intelligence in the Development of Brain-Computer Interfaces’ BMC Biomedical Engineering 6, no. 1 (2 May 2024): 4. https.//doi.org/10.1186/542490-024-00080-2.
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Future Directions
and Emerging
Trends



Brain-to-Brain Interfaces (BBIs) [=]:

=>» Direct Neural Communication

€ Enabling the transfer of information directly
between brains without verbal or physical
interaction.

=> Collaborative Problem-Solving
€ Potential for teams to share thoughts and work
together more efficiently.
=> Early Experiments

€ Studies demonstrating basic brain-to-brain
communication in humans and animals using
BCls and neural decoding.




DE0
Integration with Other Emerging Technologies [

Augmented Reality (AR) and Virtual Reality (VR)

=> Mind-Controlled Interfaces: Use BCls to navigate and interact with virtual
environments using thought alone.

=> Enhanced Immersion: Generative Al creates dynamic content that adapts in
real-time to the user's cognitive state.

Internet of Things (loT)

=> Smart Home Control: Operate household devices (lights, thermostats, appliances)
through neural commands.

Personalized Experiences

=> Devices that adjust settings based on mood or concentration levels detected by BCls.



O30,

Potential for General-Purpose Neural Interfaces &:

=> Devices capable of interpreting a wide range of neural signals for various
applications without extensive retraining.

=> Development of comfortable, easy-to-use headsets or wearable devices.

=> Making BCls mainstream for daily activities like communication, gaming, and
productivity.

=> Generative Al models enhance decoding of neural signals, increasing accuracy and
responsiveness.

=> Interfaces that learn and adapt to individual users over time for personalized
performance.



Challenges and Opportunities [=:

- Difficulty in capturing clear neural signals due to electrical noise and
overlapping brain activities.

- Current sensors may lack the precision to detect fine-grained neural
patterns necessary for complex tasks.

-> Wear and degradation of hardware components affecting performance
over time.

=> The brain's natural changes may require frequent recalibration of BClI
systems.

-> \Variability in electrode placement and contact can lead to inconsistent
data.



Ethical and Societal Considerations [=]:

Safeguarding sensitive neural data from unauthorized access and misuse.
Ensuring individuals have control over how their neural data is collected and
used.

Preventing disparities where only certain groups benefit from these technologies.
Making advanced BCI systems accessible to a broader population.

Addressing concerns about how neural interfaces may affect a person's sense of
self.

Developing policies to govern the responsible use of Generative Al and BCls.
Navigating intellectual property and liability issues related to neural data.
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Interdisciplinary Collaboration Opportunities  [=:

Bridging Diverse Fields:

-

-

Neuroscience and Al:

€ Combininginsights to enhance neural signal decoding and interpretation.
Engineering and Design:

€ Creating user-friendly, ergonomic BCl devices.

Computer Science and Data Analysis:

€ Improving algorithms for real-time processing and generative modeling.
Interdisciplinary Training Programs:

€ Preparing the next generation of researchers with a blend of skills.



Call to Action

1. Explore and Learn

2. Get Hands-On Experience

3. Join Communities and Networks

4. Contribute to Research and Development

5. Advocate for Ethical and Responsible
Innovation

6. Innovate Across Disciplines

7. Plan for Your Future Impact




Embrace the opportunity to innovate, collaborate, and make a
meaningful impact in the exciting fields of Generative Al and
Brain-Computer Interfaces.

Remember

Every great advancement begins with curiosity and the courage
to explore the unknown. Your ideas could lead to the next big
breakthrough.
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Message from the Guest Editors

The primary aim of this Special Issue is to gather high-
quality original research articles, reviews, and case studies
that demonstrate the diverse applications and
advancements of BCls. We seek contributions that explore
the full spectrum of BCI technology, including:

Clinical Applications: Research on the use of BCls in
neurorehabilitation, assistive technologies for individuals
with disabilities, mental health interventions, and other
healthcare applications. This includes studies on
improving patient outcomes, innovative therapeutic
approaches, and clinical trials.

Consumer Applications: The exploration of BCIs in gaming,
virtual reality, augmented reality, and other interactive
media. This section will cover user experience studies,
technological innovations, and market trends in consumer
BCl products.

Technological Advancements: papers focusing on the
development of new BCI hardware and software, including
signal processing techniques, machine learning algorithms,
and user interface design.
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