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Hi, I’m Athanasios Koutras

I am an Associate Professor at the Department of Electrical & Computer 
Engineering, University of Peloponnese, Greece, with a PhD in Blind Speech 
Separation and Speech Recognition from the University of Patras.

My research focuses on brain signal and medical image analysis, as well as 
speech and music processing. As Head of the SIPPRE Group, I lead projects on 
brain-computer interfaces (BCIs) for healthcare and entertainment 
applications.
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Introduction to 
Brain Signals and 
EEG



Introduction to Brain Signals
The brain consists of billions of neurons that 
communicate via electrical and chemical signals.

Synapses: Gaps where neurons pass chemical 
signals to one another, influencing the electrical 
activity of the receiving neuron.

Resting potential: Neurons maintain a voltage 
difference (about -70 mV) across their membranes.

Depolarization: When neurons are stimulated, 
sodium ions (Na+) flow into the cell, changing the 
voltage, triggering an action potential.

Repolarization Potassium ions (K+) exit the 
neuron, restoring its resting state.



Introduction to Brain Signals

Neurons receive multiple inputs; if enough excitatory signals surpass a threshold, the 
neuron fires an action potential.

The action potential travels down the neuronʼs axon to communicate with other neurons.

Neuronal populations tend to synchronize their activity, leading to brain waves (alpha, 
beta, theta, delta), which can be detected by EEG.



Recording brain signals
Magnetoencephalogram (MEG) Functional MRI (fMRI)



EEG Basics
What is Electroencephalography (EEG)?

➔ a non-invasive neuroimaging 
technique that records the electrical 
activity of the brain using electrodes 
placed on the scalp.

➔ widely used in both clinical settings for 
diagnosing neurological conditions 
and in research for studying cognitive 
processes, sleep patterns, and 
brain-computer interfaces. 



How EEG works
➔ It detects and amplifies the tiny electrical 

signals produced by neurons in the brain. 
➔ Electrodes placed on the scalp pick up these 

signals, which are then amplified and 
digitized for analysis. 

➔ The resulting waveforms represent the 
collective activity of millions of neurons, with 
different patterns and frequencies 
corresponding to various brain states and 
cognitive processes. 

➔ Modern EEG systems can use anywhere from 
a few to hundreds of electrodes, allowing for 
detailed mapping of electrical activity across 
different regions of the brain.



EEG Characteristics



Common EEG Waveforms
Delta Waves (0.5 – 4 Hz) 
Associated with deep sleep stages.

Theta Waves (4 – 8 Hz) 
Linked to drowsiness, meditation, and early sleep stages.

Alpha Waves (8 – 13 Hz) 
Observed during relaxed, wakeful states with closed eyes.

Beta Waves (13 – 30 Hz) 
Present during active thinking and focused mental activity.

Gamma Waves (>30 Hz) 
Related to higher mental activity, including perception and 
consciousness.



Signal Analysis Techniques
Time-Domain Analysis

➔ Observing voltage changes over time.
➔ Identifies temporal patterns and event-related potentials (ERPs).



Signal Analysis Techniques

Frequency-Domain Analysis

➔ Transforming signals using 
Fourier Transform.

➔ Decomposes EEG into 
constituent frequencies.

➔ Useful for power spectral 
density (PSD) estimation.

Tang, Zhichuan & Sun, Shouqian & Zhang, Sanyuan & Chen, Yumiao & Li, Chao & Chen, Shi. (2016). A 
Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control. Sensors. 16. 2050. 
10.3390/s16122050.



Artifacts and Noise in EEG Signals



Strategies for Mitigating Artifacts



EEG for BCI



EEG in BCIs

● plays a crucial role in non-invasive Brain-Computer Interfaces (BCIs). 
● primary method for capturing brain signals in real-time. 
● particularly valuable, safer and more accessible for research, clinical applications 

as well as entertainment. 
● they identify specific patterns or changes in brain signals associated with particular 

thoughts / intentions
● the patterns can then be used to control computers, communication devices, or 

assistive technologies.



Signal acquisition and processing

Signal acquisition in EEG-based BCIs involves collecting raw electrical signals from the 
scalp using electrodes. These signals are then amplified and digitized for further 
processing.



Feature extraction

● Feature extraction in BCI systems involves identifying and isolating specific 
characteristics of the EEG signal that are most relevant to the intended task. 

● Common features include power spectral density, wavelet coefficients, and 
time-domain parameters. 

● These features are chosen to maximize the discriminative information in the signal 
while reducing its dimensionality.



Classification

● using machine learning algorithms to categorize the extracted features into distinct 
classes corresponding to different mental states or intended actions. 

● Popular classification methods in BCIs include Linear Discriminant Analysis (LDA), 
Support Vector Machines (SVM), and increasingly, deep learning approaches like 
Convolutional Neural Networks (CNNs). 

● The goal of classification is to accurately interpret the user's intentions from their 
brain signals, enabling the BCI to execute the desired commands or actions.



Types of BCIs
(a brief taxonomy) 



Invasive Non-Invasive



Invasive BCIs
systems that require surgical implantation of electrodes directly into or onto the surface of the brain. 

provide high-resolution recordings of neural activity by bypassing the skull and other tissues that can 
attenuate signals in non-invasive methods.

Examples of invasive BCIs:

➔ Cortical implants: Arrays of microelectrodes surgically placed on the surface of the brain or 
inserted into the cortex. The Utah Array is a well-known example, used in research to allow 
paralyzed individuals to control robotic arms or communicate through computers.

➔ Intracortical electrodes: Finer electrodes that penetrate the cortex to record from individual 
neurons or small groups of neurons, providing exceptionally detailed neural data.

Offer superior signal quality and spatial resolution

come with risks associated with surgery and long-term implantation, such as infection or tissue 
damage.



Non-invasive BCIs
Non-invasive BCIs are systems that measure brain activity without requiring surgical intervention.

➔ EEG (Electroencephalography): Uses electrodes on the scalp to measure electrical activity of the 
brain. It's the most common type due to its high temporal resolution, portability, and relatively 
low cost.

➔ fMRI (Functional Magnetic Resonance Imaging): Measures brain activity by detecting changes in 
blood oxygenation and flow. It offers high spatial resolution but low temporal resolution and 
requires a large, immobile scanner.

➔ fNIRS (Functional Near-Infrared Spectroscopy): Uses near-infrared light to measure changes in 
blood oxygenation in the brain. It offers a balance between spatial and temporal resolution and is 
more portable than fMRI.

Each type has its own strengths and limitations, making them suitable for different BCI applications 
and research contexts.



Invasive / non-Invasive (a quick comparison)



Which one is 
better?



Synchronous
(cue based)

Asynchronous
(self based)



Synchronous BCIs

Synchronous or cue-based BCIs are systems where the user can only interact with the 
interface during specific, predefined time windows. 

operate on a fixed schedule, where the system prompts the user to perform mental 
tasks at specific times. 

The user must respond to these cues, generating brain signals that the BCI can 
interpret. 



Characteristics of synchronous BCIs

➔ Controlled timing of interactions
➔ Reduced signal processing complexity due to known timing
➔ Potentially easier for novice users due to clear instructions
➔ Limited flexibility in terms of when the user can provide input

These systems are often used in applications like spelling devices or simple selection 
tasks, where the timing of user input can be controlled.



allow users to interact with the interface at any time, without waiting for external cues.

continuously monitor the user's brain activity, allowing them to generate commands or inputs 
whenever they choose. 

The system must be able to distinguish between intentional control signals and background 
brain activity. 

For example, in a motor imagery-based BCI, the user might imagine moving their left or right 
hand to control a cursor on a screen, and can do so at any moment they wish.

Asynchronous (self-paced) BCIs



Key characteristics of asynchronous BCIs
➔ More natural and intuitive interaction
➔ Greater flexibility for the user
➔ Increased complexity in signal processing and classification
➔ Potential for higher information transfer rates in skilled users
➔ More challenging to implement due to the need for continuous signal interpretation
➔ often used in applications requiring more fluid control (continuous movement of 

prosthetic limbs, navigation in virtual environments). 
➔ generally they require more training for both the user and the system 
➔ offer more naturalistic interaction once mastered.



Asynchronous/ synchronous (a quick comparison)



Which one is 
better?



Input Output



Input BCIs
Input BCIs (output BCIs from the brain's perspective) are systems designed to read and interpret 
brain signals to control external devices or software.

➔ Input BCIs capture brain activity patterns associated with specific thoughts, intentions, or 
mental states. 

➔ These patterns are then translated into commands for controlling various devices or 
interfaces. The process typically involves:
◆ Signal acquisition: Recording brain activity, usually via EEG for non-invasive BCIs
◆ Signal processing: Cleaning and filtering the raw brain signals
◆ Feature extraction: Identifying relevant characteristics in the processed signals
◆ Classification: Interpreting the features to determine the user's intent
◆ Device control: Translating the classified signals into commands for the target device



Common applications of input BCIs
➔ Cursor control on computer screens
➔ Wheelchair navigation for individuals with motor disabilities
➔ Prosthetic limb movement
➔ Spelling devices for communication
➔ Smart home control for individuals with severe motor impairments

The main advantage of input BCIs is that they allow direct brain-to-device communication

they often require significant user training 

can be slower or less accurate than conventional input methods for able-bodied individuals.



Output BCIs: Sending information to the brain
Output BCIs, also known as input BCIs from the brain's perspective, are systems designed to send 
information directly to the brain, bypassing traditional sensory pathways. 

➔ aim to provide sensory or cognitive information to the user by stimulating specific areas of 
the brain. 

➔ This is achieved through various methods, depending on whether the BCI is invasive or 
non-invasive. The process typically involves:
◆ Information encoding: Translating external data into patterns of neural stimulation
◆ Stimulation delivery: Activating targeted brain areas using electrical, magnetic, or 

other forms of energy
◆ Neural interpretation: The brain's adaptation to and understanding of these artificial 

inputs



Applications of output BCIs
➔ Restoring or augmenting sensory functions (e.g., artificial vision or hearing)
➔ Providing sensory feedback for prosthetic limbs
➔ Enhancing memory or cognitive functions
➔ Treating neurological disorders through targeted stimulation
➔ Delivering information directly to the brain (e.g., for learning or augmented reality)

Output BCIs have the potential to significantly impact various fields, from medical treatments to 
human augmentation. 

they face challenges in terms of precise stimulation, long-term safety, and ethical considerations 
regarding altering brain function. 

Many output BCI technologies are still in early research stages, with some more advanced 
applications in clinical trials.



Bidirectional BCIs: Combining input and output
➔ advanced systems that combine both input and output functionalities, creating a two-way 

communication channel between the brain and external devices.
➔ Bidirectional BCIs integrate the capabilities of reading brain signals (input BCIs) and 

sending information back to the brain (output BCIs). 
➔ create a closed-loop system where the brain can both send commands and receive feedback 

or new information. The process typically involves:
◆ Reading brain signals to interpret user intentions or mental states
◆ Processing these signals and translating them into device commands
◆ Generating appropriate feedback or new information based on the device's response or 

external data
◆ Delivering this information back to the brain through stimulation



Applications of bidirectional BCIs
➔ Enhanced prosthetic control with sensory feedback
➔ More intuitive and responsive brain-computer interaction
➔ Potential for neural rehabilitation through simultaneous stimulation and monitoring
➔ Advanced neuroprosthetics that can both receive commands and provide sensations
➔ Cognitive enhancement applications combining brain monitoring and targeted stimulation

represent a cutting-edge area of research with the potential to create more natural and efficient 
brain-machine interfaces. 

they also present significant challenges in terms of system complexity, signal processing, and 
ensuring safe and effective simultaneous reading and stimulation of neural activity. 

As research progresses, bidirectional BCIs could lead to transformative applications in healthcare, 
human augmentation, and beyond.



Which one is better?



Which one is better?



Challenges and 
Limitations



Technical Challenges



User Experience Challenges



Data Scarcity and Variability



Current 
Applications of 
BCIs in Healthcare



Common BCI systems



The P300 system

detects the P300 wave, an event-related potential (ERP) that appears in the EEG signal 
approximately 300 milliseconds after a person perceives a rare or significant stimulus.

Brunner P, Ritaccio AL, Emrich JF, Bischof H and Schalk G (2011) Rapid communication with a “P300” matrix speller using 
electrocorticographic signals (ECoG). Front. Neurosci. 5:5. doi: 10.3389/fnins.2011.00005



P300 - How it works



P300 - Key features

Non-Invasive
Utilizes EEG electrodes placed on the scalp, eliminating the need for surgical procedures.

High Accuracy
Capable of reliably detecting user intentions based on well-defined neural responses.

Versatile Applications
Used in assistive technologies for individuals with motor impairments, allowing 
communication and environmental control.

User-Friendly
Requires minimal training, making it accessible for clinical and home settings.



P300 - Applications

Assistive Communication
Enables individuals with conditions like amyotrophic lateral 
sclerosis (ALS) or spinal cord injuries to communicate via 
text or speech synthesis.

Environmental Control
Allows users to operate devices such as wheelchairs, robotic 
arms, or smart home systems.

Research Tool
Serves as a platform for studying cognitive processes and 
neural mechanisms underlying attention and 
decision-making.



Steady-State Visually Evoked Potential (SSVEP)

a non-invasive neural interface that enables direct communication by leveraging the 
brain's natural electrical response to visual stimuli flickering at specific frequencies.

When a user focuses on a visual stimulus that flickers at a constant rate, the brain 
generates electrical activity at the same frequency, known as the Steady-State Visually 
Evoked Potential (SSVEP). 

This response can be detected using electroencephalography (EEG) and translated into 
commands for controlling devices or software applications.



SSVEP - How it works



SSVEP - Key features

Non-Invasive
Utilizes surface EEG electrodes, avoiding the need for surgical implantation.

High Information Transfer Rate
Offers rapid communication due to continuous signal generation and minimal latency.

Robust Signal Detection
SSVEP signals have a high signal-to-noise ratio, making them relatively easy to detect and 
classify.

Minimal Training Required
Users can typically operate the system with little to no extensive training.



SSVEP - Advantages

Fast Response Time
The continuous nature of SSVEP allows for quick detection and system responsiveness.

High Accuracy
Distinct flickering frequencies reduce the likelihood of misclassification, enhancing system 
reliability.

Scalability
Multiple commands can be implemented by adding more stimuli with different 
frequencies without increasing the cognitive load significantly.



SSVEP - Considerations



SSVEP - Applications
Assistive Communication
Empowers individuals with motor impairments to 
select letters, words, or commands by focusing 
on specific visual stimuli, facilitating 
communication.

Device Control
Enables control over wheelchairs, prosthetic 
limbs, drones, or smart home devices through 
gaze-based selection.

Gaming and Virtual Reality
Provides an interactive experience where users 
can control game elements or navigate virtual 
environments using their visual attention. Erdem Erkan, Mehmet Akbaba, A study on performance increasing in SSVEP based BCI 

application, Engineering Science and Technology, an International Journal, Volume 21, Issue 3, 
2018, Pages 421-427, ISSN 2215-0986, https://doi.org/10.1016/j.jestch.2018.04.002.



Motor Imagery (MI) BCI

a non-invasive neural interface 

enables individuals to communicate and 
control external devices through the mental 
simulation of physical movements 
without actual muscle activity. 

translates thought patterns into actionable 
commands, providing a direct pathway 
between the brain and external systems.

García-Murillo DG, Álvarez-Meza AM, Castellanos-Dominguez CG. KCS-FCnet: 
Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor 
Imagery Classification. Diagnostics. 2023; 13(6):1122. 
https://doi.org/10.3390/diagnostics13061122 



MI - How it works



MI - Key features

Non-Invasive
Utilizes surface EEG electrodes, eliminating the need for surgical procedures.

Natural Control Paradigm
Leverages the brain's inherent motor planning processes, making the interface intuitive 
after training.

Versatile Applications
Can be customized to recognize various imagined movements, providing multiple control 
commands.

No External Stimuli Required
Does not rely on visual or auditory cues, allowing operation without external prompts.



MI - Advantages

Intuitive Use
Mimics natural motor intention processes, which can be more easily adopted by users 
after appropriate training.

Independence from Sensory Channels
Beneficial for users with sensory impairments, as it does not require visual or auditory 
stimuli.

Enhancement of Motor Recovery
Can aid in physical rehabilitation by activating motor pathways and encouraging 
neuroplastic changes.



MI - Considerations



MI - Applications

Neurorehabilitation
Assists stroke survivors and patients with motor impairments in retraining motor 
functions by promoting neural plasticity through motor imagery exercises.

Prosthetic Control
Enables amputees or individuals with paralysis to control robotic limbs or exoskeletons, 
restoring mobility and independence.

Communication Aids
Provides alternative communication methods for individuals with conditions like locked-in 
syndrome by mapping imagined movements to letters or words.

Virtual Reality and Gaming
Offers immersive control in virtual environments, enhancing user experience by allowing 
interaction through thought-based commands.



Imagined Speech (Silent Speech) BCI

enables communication by decoding neural 
signals associated with the imagination of 
speech without actual vocalization. 

interprets the brain's electrical activity 
related to speech planning and articulation. 

holds significant promise for people who are 
unable to speak due to neurological 
conditions 

offers a silent communication method in 
environments where speech is impractical.

Ciaran Cooney, Raffaella Folli, Damien Coyle, Neurolinguistics Research Advancing 
Development of a Direct-Speech Brain-Computer Interface, iScience, Volume 8, 2018, Pages 
103-125, ISSN 2589-0042, https://doi.org/10.1016/j.isci.2018.09.016.



IS - How It Works



IS - Key Features
Non-Invasive
Utilizes surface EEG electrodes, eliminating the need for surgical intervention.

Silent Communication
Allows users to communicate without audible speech or physical movements, ideal for 
individuals with speech impairments or in noise-sensitive environments.

Natural Interaction
Builds upon the natural cognitive process of inner speech, making the system intuitive with 
practice.

Real-Time Processing
Aims to provide immediate translation of imagined speech into text or audio output for seamless 
communication.



IS - Advantages
Increased Independence
Empowers individuals with speech and motor impairments to express themselves without assistance.

Enhanced Privacy
Enables confidential communication, as thoughts can be transmitted without external cues or 
audible sounds.

Intuitive Use
Leverages the natural process of thinking in words, potentially reducing the learning curve compared 
to other BCI modalities.



IS - Considerations



IS - Current Research and Development
Advanced Signal Processing
Researchers are developing sophisticated algorithms to improve the accuracy of decoding imagined 
speech, including the use of deep learning neural networks.

High-Density EEG and Alternative Modalities
Exploring the use of high-density EEG arrays or other neuroimaging techniques like functional 
Near-Infrared Spectroscopy (fNIRS) or Magnetoencephalography (MEG) to enhance signal resolution.

Personalized Models
Implementing adaptive systems that learn from individual users' neural patterns to improve 
performance over time.

Integration with Assistive Technologies
Combining imagined speech BCI systems with existing communication devices to create hybrid 
solutions that maximize user benefit.



IS - Applications
Assistive Communication
Offers a vital communication channel for individuals with conditions like amyotrophic lateral 
sclerosis (ALS), locked-in syndrome, or severe speech apraxia.

Covert Communication
Useful in situations requiring silent communication, such as military operations, secure 
communications, or noisy environments where speaking is challenging.

Augmentative and Alternative Communication (AAC)
Enhances existing AAC devices by providing a more direct and efficient input method through 
thought-based communication.



Other types of BCI systems



Introduction to 
Generative AI



What is Generative AI?
Generative AI refers to artificial intelligence systems that can create new content, data, or 
outputs based on patterns learned from existing data. 

➔ is a subset of machine learning that focuses on creating new, original content rather than 
just analyzing or categorizing existing data. 

➔ These systems learn the underlying patterns and structures of their training data and use this 
knowledge to generate new, similar content.



Generative AI
➔ Unsupervised Learning: Many generative AI models use unsupervised learning techniques, 

where the system learns patterns from data without explicit labels.
➔ Latent Space: This is the compressed representation of data that generative models create 

and manipulate to generate new outputs.
➔ Sampling: The process of creating new outputs by sampling from the learned probability 

distribution of the training data.
➔ Transfer Learning: The ability to apply knowledge learned from one task to another, allowing 

for more efficient training and diverse applications.
➔ Conditional Generation: Creating outputs based on specific input conditions or constraints, 

allowing for more controlled generation.



Types of Generative AI - GANs
Generative Adversarial Networks (GANs)

consist of two neural networks: a generator and a 
discriminator that compete against each other. 

➔ The generator creates fake data
➔ the discriminator tries to distinguish between real 

and fake data. 

This adversarial process leads to the generation of highly 
realistic outputs.

➔ Can produce very high-quality, realistic outputs
➔ Widely used in image generation and manipulation
➔ Challenging to train and can be unstable

Wang, Ran, and Zhe Sage Chen. ʻLarge-Scale Foundation Models and Generative AI for BigData 

Neuroscience.̓ Neuroscience Research, June 2024, S0168010224000750. 

https://doi.org/10.1016/j.neures.2024.06.003.

https://doi.org/10.1016/j.neures.2024.06.003
https://doi.org/10.1016/j.neures.2024.06.003


How GANs work



Variational Autoencoders (VAEs)

a type of autoencoder that learn to encode data into a compressed representation and then 
decode it back. 

They use probabilistic encoding, which allows for smooth interpolation and generation of new 
data.

➔ good at learning compact representations of data
➔ can generate diverse outputs
➔ produce less sharp results compared to GANs
➔ useful for tasks like data compression and 

anomaly detection

Types of Generative AI - VAEs

Wang, Ran, and Zhe Sage Chen. ʻLarge-Scale Foundation Models and Generative AI for BigData 

Neuroscience.̓ Neuroscience Research, June 2024, S0168010224000750. 

https://doi.org/10.1016/j.neures.2024.06.003.

https://doi.org/10.1016/j.neures.2024.06.003
https://doi.org/10.1016/j.neures.2024.06.003


How VAEs work
Encoder Network
Maps input data to a latent space, producing parameters of a probability distribution (mean and 
variance).

Decoder Network
Reconstructs data from the latent representation.

➔ The encoder outputs a distribution over the latent space, not just a single point.
➔ Allows for sampling and generating new data by sampling from this distribution.
➔ VAEs aim to approximate the true data distribution by minimizing the difference between the 

learned distribution and the true distribution.



Types of Generative AI - Transformers
Transformer-based models

based on the Transformer architecture, use 
self-attention mechanisms to process sequential 
data. They've revolutionized natural language 
processing and are now being applied to other 
domains.

➔ Excellent at handling sequential data, especially 
text

➔ Can generate coherent, context-aware outputs
➔ Scalable to very large models (e.g., GPT-3, BERT)
➔ Widely used in language models, text generation, 

and increasingly in other domains like image and 
audio generation

Wang, Ran, and Zhe Sage Chen. ʻLarge-Scale Foundation Models and Generative AI for BigData 

Neuroscience.̓ Neuroscience Research, June 2024, S0168010224000750. 

https://doi.org/10.1016/j.neures.2024.06.003.

https://doi.org/10.1016/j.neures.2024.06.003
https://doi.org/10.1016/j.neures.2024.06.003


How Transformers work
Self-Attention Mechanism

➔ Allows the model to weigh the relevance of different words (or elements) in the input 
sequence when generating an output.

➔ Multiple attention mechanisms run in parallel, capturing different aspects of relationships.

Encoder-Decoder Architecture

➔ Encoder: Processes the input sequence and generates a representation.
➔ Decoder: Uses the encoder's output and previous decoder outputs to generate the next 

element in the sequence.



How Generative AI differs from traditional AI?



Integrating 
Generative AI with 
BCIs



Generative AI and BCI

The signals used (like EEG) often face challenges like data scarcity, noise, and 
imbalances. 

Generative AI can help:

➔ Data generation: Generate synthetic EEG data to augment real datasets.
➔ Improve model accuracy: Address data imbalance, especially in tasks like error 

recognition or motor imagery classification.
➔ Signal Interpretation: Generative models can interpret complex neural signals 

from the brain, reconstructing intended movements or even visualizations.
➔ Natural Language Generation: Transformers enable users to translate neural 

signals into text, facilitating communication for individuals with speech 
impairments.



Key Generative Models in BCI

➔ GANs (Generative Adversarial Networks)
◆ Two models (a generator and discriminator) work together to create realistic data.

➔ DDPMs (Denoising Diffusion Probabilistic Models)
◆ Create high-quality data by denoising input signals, suitable for neurophysiological data like EEG.

➔ Transformers
◆ can be used to decode EEG of imagined speech and overt speech, improving performance and 

lowering the number of parameters



Advances in Generative AI and BCI

Recent advances in Generative AI and BCI are mainly in the following areas:



Data augmentation



Key Generative AI Applications in BCI

Data Augmentation and Balancing



Conditional GANs

➔ EEG data augmentation using conditional generative adversarial networks (cGANs) 
➔ enhance the classification performance of motor imagery (MI) BCI systems. 
➔ using synthetic EEG data generated we can significantly improve the accuracy and 

robustness of various classifiers in MI-based BCIs.

Choo, Sanghyun, Hoonseok Park, Jae-Yoon Jung, Kevin Flores, and Chang S. Nam. ʻImproving Classification Performance of Motor Imagery BCI through EEG Data Augmentation with Conditional Generative 

Adversarial Networks.̓ Neural Networks 180 (December 2024): 106665. https://doi.org/10.1016/j.neunet.2024.106665.

https://doi.org/10.1016/j.neunet.2024.106665


Transformer based models

Use of transformer-based models to solve 
the problem of data augmentation

Keutayeva, Aigerim, and Berdakh Abibullaev. ʻData Constraints and Performance Optimization for Transformer-Based Models in EEG-Based Brain-Computer Interfaces: A Survey.̓ IEEE Access 12 (2024): 62628–47. 

https://doi.org/10.1109/ACCESS.2024.3394696.

https://doi.org/10.1109/ACCESS.2024.3394696
https://doi.org/10.1109/ACCESS.2024.3394696


Generative Adversarial Networks

➔ application of GANs to motor imagery 
(MI) signal classification in 
brain-computer interfaces (BCIs).

➔ use-cases such as data augmentation, 
domain adaptation, feature extraction, 
and artifact removal

➔ overcome challenges like data scarcity, 
inter-subject variability, and low signal 
quality. 

Mishra, Shubhra, Osama Mahmudi, and Amin Jalali. ʻMotor Imagery Signal Classification Using Adversarial Learning: A Systematic Literature Review.̓ IEEE Access 12 (2024): 91053–74. https://doi.org/10.1109/ACCESS.2024.3421569.

https://doi.org/10.1109/ACCESS.2024.3421569


Signal enhancement / artifact removal



Denoising Diffusion Probabilistic Models (DDPMs)

Use of DDPMs for generating realistic 
neurophysiological time series, including 
EEG, ECoG, and LFP data.

Vetter, Julius, Jakob H. Macke, and Richard Gao. ʻGenerating Realistic Neurophysiological Time Series with Denoising Diffusion 

Probabilistic Models.̓ Patterns 5, no. 9 (September 2024): 101047. https://doi.org/10.1016/j.patter.2024.101047.

https://doi.org/10.1016/j.patter.2024.101047


The EEGANet
➔ EEGANet is a GAN-based framework for 

removing ocular artifacts from EEG 
signals 

➔ Doesnʼt rely on electrooculography 
(EOG) channels or manual inspection. 

➔ By generating clean EEG signals from 
raw, artifact-contaminated data, 
EEGANet improves the quality of EEG 
data for brain-computer interface (BCI) 
applications. 

➔ It represents a significant step forward 
in applying generative AI techniques to 
enhance EEG signal processing in BCIs.

Sawangjai, Phattarapong, Manatsanan Trakulruangroj, Chiraphat Boonnag, Maytus Piriyajitakonkij, Rajesh Kumar Tripathy, Thapanun Sudhawiyangkul, and Theerawit Wilaiprasitporn. ʻEEGANet: Removal of Ocular Artifacts From the EEG Signal 

Using Generative Adversarial Networks.̓ IEEE Journal of Biomedical and Health Informatics 26, no. 10 (October 2022): 4913–24. https://doi.org/10.1109/JBHI.2021.3131104.

https://doi.org/10.1109/JBHI.2021.3131104


Content creation



The Brain LLM
➔ a brain-computer interface that 

generates continuous language 
from fMRI brain recordings using 
a large language model (LLM).

➔ integrates brain-derived 
semantic information directly 
into the language generation 
process

➔ Eliminates the need for a 
pre-defined set of language 
candidates. 

➔ shows promise for future 
applications in communication 
aids and neuroprosthetics for 
individuals with speech 
impairments.

Ye, Ziyi, Qingyao Ai, Yiqun Liu, Maarten de Rijke, Min Zhang, Christina Lioma, and Tuukka Ruotsalo. ʻLanguage Generation from Brain Recordings.̓ arXiv, 11 March 2024. http://arxiv.org/abs/2311.09889.

http://arxiv.org/abs/2311.09889


Image Generation BCI networks

➔ An EEG-based BCI to provide relevance 
feedback to a GAN for interactive image 
generation. 

➔ The system uses brain signals to adjust the 
latent space of the GAN, guiding it to generate 
images that match the user's mental target 
(e.g., specific facial features). 

➔ This innovative approach demonstrates the 
potential for BCIs to be integrated with 
generative models to enhance 
human-computer interaction in creative and 
assistive applications.

Carlos de la Torre-Ortiz, Michiel M. A. Spapé, Lauri Kangassalo, and Tuukka Ruotsalo. ʻBrain Relevance Feedback for Interactive Image Generation.̓ Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, 20 

October 2020. https://doi.org/10.1145/3379337.3415821.

https://doi.org/10.1145/3379337.3415821


The Generative BCI
➔ GBCI uses EEG-based brain signals to guide a 

GAN in generating images that are predicted 
to be personally attractive to the user. 

➔ By using implicit brain responses as 
feedback, it iteratively adjusts the GANʼs 
latent space to create new, personalized 
images that align with the userʼs sense of 
attractiveness. 

➔ The system was validated with 30 
participants, achieving an accuracy of 
83.33% in generating attractive images, 
demonstrating the potential of combining 
BCIs with generative AI to personalize visual 
content.

Spapé, Michiel M., Keith M. Davis, Lauri Kangassalo, Niklas Ravaja, Zania Sovijärvi-Spape, and Tuukka Ruotsalo. ʻBrain-Computer Interface for Generating Personally Attractive Images.̓ Ieee Transactions on Affective Computing, 2023. 

https://doi.org/10.1109/taffc.2021.3059043.

https://doi.org/10.1109/taffc.2021.3059043
https://doi.org/10.1109/taffc.2021.3059043


Dual Conditional Autoencoder

➔ The DCAE framework 
reconstructs images from EEG 
signals, addressing the challenge 
of converting brain signals into 
visual representations

➔ Reconstruction from EEG to 
Image (RE2I)

Zeng, Hong, Nianzhang Xia, Ming Tao, Deng Pan, Haohao Zheng, Chu Wang, Feifan Xu, Wael Zakaria, and Guojun Dai. ʻDCAE: A Dual Conditional Autoencoder Framework for the Reconstruction from EEG into Image.̓ Biomedical Signal Processing and 

Control 81 (March 2023): 104440. https://doi.org/10.1016/j.bspc.2022.104440.

https://doi.org/10.1016/j.bspc.2022.104440


multimodal language decoding from brain activity

evaluate how AI models decode language across different modalities (text, speech, images, and video)

Zhao, Yuhao, Yu Chen, Kaiwen Cheng, and Wei Huang. ʻArtificial Intelligence Based Multimodal Language Decoding from Brain Activity: A Review.̓ Brain 

Research Bulletin 201 (September 2023): 110713. https://doi.org/10.1016/j.brainresbull.2023.110713.

https://doi.org/10.1016/j.brainresbull.2023.110713


Temporal Spatial Transformer Network
➔ The TSTN and the EEG Conformer, improve EEG classification accuracy and noise reduction. 
➔ While the field is still evolving, transformers are positioned as a promising tool for advancing 

BCI technologies, particularly in enhancing real-time performance and multi-class 
classification tasks.

Pfeffer, Maximilian Achim, Steve Sai Ho Ling, and Johnny Kwok Wai Wong. ʻExploring the Frontier: Transformer-Based Models in EEG Signal Analysis for Brain-Computer Interfaces.̓ Computers in Biology and Medicine 178 (August 2024): 108705. 

https://doi.org/10.1016/j.compbiomed.2024.108705.

https://doi.org/10.1016/j.compbiomed.2024.108705
https://doi.org/10.1016/j.compbiomed.2024.108705


Review Paper

➔ how GANs, VAEs, transformers, and diffusion models, generate synthetic data
➔ augment limited EEG datasets, 
➔ improve the resolution of brain signals
➔ enhance cross-subject BCI performance
➔ generate speech and images from EEG data

Eldawlatly, Seif. ʻOn the Role of Generative Artificial Intelligence in the Development of Brain-Computer Interfaces.̓ BMC Biomedical Engineering 6, no. 1 (2 May 2024): 4. https://doi.org/10.1186/s42490-024-00080-2.

https://doi.org/10.1186/s42490-024-00080-2


Future Directions 
and Emerging 
Trends



Brain-to-Brain Interfaces (BBIs)

➔ Direct Neural Communication
◆ Enabling the transfer of information directly 

between brains without verbal or physical 
interaction.

➔ Collaborative Problem-Solving
◆ Potential for teams to share thoughts and work 

together more efficiently.

➔ Early Experiments
◆ Studies demonstrating basic brain-to-brain 

communication in humans and animals using 
BCIs and neural decoding.



 Integration with Other Emerging Technologies

Augmented Reality (AR) and Virtual Reality (VR)

➔ Mind-Controlled Interfaces: Use BCIs to navigate and interact with virtual 
environments using thought alone.

➔ Enhanced Immersion: Generative AI creates dynamic content that adapts in 
real-time to the user's cognitive state.

Internet of Things (IoT)

➔ Smart Home Control: Operate household devices (lights, thermostats, appliances) 
through neural commands.

Personalized Experiences

➔ Devices that adjust settings based on mood or concentration levels detected by BCIs.



Potential for General-Purpose Neural Interfaces

➔ Devices capable of interpreting a wide range of neural signals for various 
applications without extensive retraining.

➔ Development of comfortable, easy-to-use headsets or wearable devices.

➔ Making BCIs mainstream for daily activities like communication, gaming, and 
productivity.

➔ Generative AI models enhance decoding of neural signals, increasing accuracy and 
responsiveness.

➔ Interfaces that learn and adapt to individual users over time for personalized 
performance.



Challenges and Opportunities

➔ Difficulty in capturing clear neural signals due to electrical noise and 
overlapping brain activities.

➔ Current sensors may lack the precision to detect fine-grained neural 
patterns necessary for complex tasks.

➔ Wear and degradation of hardware components affecting performance 
over time.

➔ The brain's natural changes may require frequent recalibration of BCI 
systems.

➔ Variability in electrode placement and contact can lead to inconsistent 
data.



Ethical and Societal Considerations

➔ Safeguarding sensitive neural data from unauthorized access and misuse.
➔ Ensuring individuals have control over how their neural data is collected and 

used.
➔ Preventing disparities where only certain groups benefit from these technologies.
➔ Making advanced BCI systems accessible to a broader population.
➔ Addressing concerns about how neural interfaces may affect a person's sense of 

self.
➔ Developing policies to govern the responsible use of Generative AI and BCIs.
➔ Navigating intellectual property and liability issues related to neural data.



Interdisciplinary Collaboration Opportunities

Bridging Diverse Fields:

➔ Neuroscience and AI:
◆ Combining insights to enhance neural signal decoding and interpretation.

➔ Engineering and Design:
◆ Creating user-friendly, ergonomic BCI devices.

➔ Computer Science and Data Analysis:
◆ Improving algorithms for real-time processing and generative modeling.

➔ Interdisciplinary Training Programs:
◆ Preparing the next generation of researchers with a blend of skills.



Call to Action

1. Explore and Learn

2. Get Hands-On Experience

3. Join Communities and Networks

4. Contribute to Research and Development

5. Advocate for Ethical and Responsible 
Innovation

6. Innovate Across Disciplines

7. Plan for Your Future Impact



Embrace the opportunity to innovate, collaborate, and make a 
meaningful impact in the exciting fields of Generative AI and 

Brain-Computer Interfaces.

Remember
Every great advancement begins with curiosity and the courage 

to explore the unknown. Your ideas could lead to the next big 
breakthrough.





Thank You!
Athanasios Koutras
Associate Professor
Dept. of Electrical & Computer Engineering
University of Peloponnese
Greece

personal: http://www.thanasiskoutras.com
mail: koutras@uop.gr
lab: http://www.sippre-group.com


